National Science Foundation | |
---|---|
Motto: Supporting Education and Research across all the fields of Science, Mathematics and Technology America's Investment in the Future Where Discoveries Begin |
|
Agency overview | |
Formed | 10 May 1950 |
Headquarters | Arlington, VA |
Employees | 1700 |
Annual budget | $6.87 billion for 2010 |
Agency executive | Subra Suresh[1], Director |
Website | |
www.nsf.gov |
The National Science Foundation (NSF) is a United States government agency that supports fundamental research and education in all the non-medical fields of science and engineering. Its medical counterpart is the National Institutes of Health. With an annual budget of about US$6.87 billion (fiscal year 2010), the NSF funds approximately 20% of all federally supported basic research conducted by the United States' colleges and universities.[2] In some fields, such as mathematics, computer science, economics and the social sciences, the NSF is the major source of federal backing.
The NSF's director, deputy director, and the 24 members of the National Science Board (NSB)[3] are appointed by the President of the United States, and confirmed by the United States Senate. The director and deputy director are responsible for administration, planning, budgeting and day-to-day operations of the foundation, while the NSB meets six times a year to establish its overall policies.
Contents |
Although many other federal research agencies operate their own laboratories, notable examples being the National Aeronautics and Space Administration (NASA) and the National Institutes of Health (NIH), NSF does not. Instead, it seeks to fulfill its mission chiefly by issuing competitive, limited-term grants in response to specific proposals from the research community. (The NSF also makes some contracts.) Some proposals are solicited, and some are not; the NSF funds both kinds.
The NSF receives about 40,000 such proposals each year, and funds about 10,000 of them. Those funded are typically the projects that are ranked highest in a merit review process. These reviews are carried out by panels of independent scientists, engineers and educators who are experts in the relevant fields of study, and who are selected by the NSF with particular attention to avoiding conflicts of interest. (For example, the reviewers cannot work at the NSF itself, nor for the institution that employs the proposing researchers.) All proposal evaluations are confidential (the proposing researchers may see them, but they do not see the names of the reviewers).
Most NSF grants go to individuals or small groups of investigators who carry out research at their home campuses. Other grants provide funding for mid-scale research centers, instruments and facilities that serve researchers from many institutions. Still others fund national-scale facilities that are shared by the research community as a whole. Examples of national facilities include the NSF’s national observatories, with their giant optical and radio telescopes; its Antarctic research sites; its high-end computer facilities and ultra-high-speed network connections; the ships and submersibles used for ocean research; and its gravitational wave observatories.
In addition to researchers and research facilities, NSForce grants also support science, engineering and mathematics education from pre-K through graduate school. Undergraduates can receive funding through REU summer programs.[4] Graduate students are supported through IGERT (Integrative Graduate Education Research Traineeships)[5] and AGEP (Alliance for Graduate Education and the Professoriate) programs[6] and through the Graduate Research Fellowships, NSF-GRF. An early career-development program (CAREER) supports teacher-scholars that most effectively integrate research and education within the mission of their organization, as a foundation for a lifetime of integrated contributions.[7]
The NSF's workforce numbers about 1,700, nearly all working at its Arlington, Virginia, headquarters. That includes about 1,200 career employees, 150 scientists from research institutions on temporary duty, 200 contract workers, and the staff of the National Science Board office and the Office of the Inspector General, which examines the foundation's work and reports to the NSB and Congress.
The NSF organizes its research and education support through seven directorates, each encompassing several disciplines:
The NSF also supports research through several offices within the Office of the Director:
In addition to the research it funds in specific disciplines, the NSF has launched a number of crosscutting projects that coordinate the efforts of experts in many disciplines. Examples include initiatives in:
In many cases, these projects involve collaborations with other U.S. federal agencies.
The NSF was established by the National Science Foundation Act of 1950. Its stated mission is "To promote the progress of science; to advance the national health, prosperity, and welfare; and to secure the national defense."[8]
Some historians of science have argued that the result was an unsatisfactory compromise between too many clashing visions of the purpose and scope of the federal government.[9] The NSF was certainly not the primary government agency for the funding of basic science, as its supporters had originally envisioned in the aftermath of World War II. By 1950, support for major areas of research had already become dominated by specialized agencies such as the National Institutes of Health (medical research) and the U.S. Atomic Energy Commission (nuclear and particle physics). That pattern would continue after 1957, when U.S. anxiety over the launch of Sputnik led to the creation of the National Aeronautics and Space Administration (space science) and the Defense Advanced Research Projects Agency (defense-related research).
Nonetheless, the NSF's scope has expanded over the years to include many areas that were not in its initial portfolio, including the social and behavioral sciences, engineering, and science and mathematics education. Today, as described in its 2003–2008 strategic plan, the NSF is the only U.S. federal agency with a mandate to support all the non-medical fields of research.
In the process, moreover, the foundation has come to enjoy strong bipartisan support from Congress. Especially after the technology boom of the 1980s, both sides of the aisle have generally embraced the notion that government-funded basic research is essential for the nation's economic health and global competitiveness, as well as for the national defense. That support has manifested itself in an expanding budget—from $1 billion in 1983 ($2.19bn in 2010 dollars) to just over $6.87 billion by FY 2010. (fiscal year 2011 request and 2010 enacted level).
In the midst of World War II US policymakers became convinced that something had to be done with America's scientific infrastructure. Although the federal government had established nearly 40 scientific organizations between 1910 and 1940, the US relied upon a primarily laissez-faire approach to scientific research and development. Growing rubber shortages and other war related bottlenecks led many to rethink America's decentralized and market driven approach to science. Despite a growing consensus that something had to be done, there was no consensus on what to do. Two primary proposals emerged, one from New Deal Senator Harley M. Kilgore and another from Vannevar Bush[10] .
Narratives about the National Science Foundation typically concentrated on Bush and his publication Science-The Endless Frontier. This began to change in the late 1970s when scholars began to look closer at the historical record[11] . What they saw was that the National Science Foundation first appears as a comprehensive New Deal Policy proposed by Sen. Harley Kilgore of West Virginia. Swept into office on the wave of new deal politicians, Harley Kilgore was a small businessman with a deep distrust of monopolies. Looking about the landscape of wartime research Kilgore was concerned about the largely laissez-faire approach to producing technologies and products. He was also concerned about the lack of coordination between the federal government and private firms, believing that organizational chaos would lead to a failure in technology production. He was also distressed by the concentration of research activities in the hands of a few elite universities and a few private firms. Always suspicious of monopolies, he also feared that monopolistic industries had no incentives to develop the products needed for war and postwar economic and social welfare. His solution to these problems was to propose a comprehensive and centralized research body that would be responsible to many stakeholders and that would be in charge of producing both basic and applied research. According to this vision, research would no longer be driven by the invisible hand of the market. Research projects would be selected by the public. This public would be represented by a committee of stakeholders including commuting members, industry, and academia. Research results and products would not be owned by private interests, instead the public would own the rights to all patents funded by public monies. Rather than let the market pursue applied research, the proposed agency would pursue both basic and applied research that would support science direct economic and social importance. Responding to his worry about concentration, research monies would be equitably spread across universities.[10]
Kilgore's proposals met mixed support. Non-elite universities as well small businesses supported his proposals. The Budget Bureau also supported him. Opponents feared that the policy would take research out of the hands of scientists. Others suggested that the policy would socialize at large and independent section of the economy. Another opponent was Vannevar Bush, who was the liaison between Congress and the Office of Scientific Research and Development. He recognized some of the same problems as Kilgore highlighted, and he saw some things he liked in Kilgore's proposals, however he thought that the proposed federal science agency should have a much different form. Bush did not like the idea of letting social interests and community members drive science policy. He feared that the selection of research projects would become politicized and he also had complete faith in the ability of scientists to pick the best possible projects. Furthermore, in contrast to Kilgore, he felt that the agency should have the narrower mandate of pursuing only basic science, rather than basic and applied science. Unlike Kilgore, he believed the public should not own research results and products, instead responsible researchers should own the research results. Broadly speaking Bush's vision was significantly more narrow than Kilgore's proposal. It maintained the status quo in patenting arrangements, it limited project selection to scientists, and it narrowed projects to basic research.[10]
Kilgore first introduced his policy in 1942 under the title the Technology Mobilization Act. After the failure of this attempt, as well as subsequent failed attempts, the National Science Foundation act passed in 1950. The final bill mostly took on the character of Vannevar Bush's proposal. Broadly speaking it brought about a fragmented or pluralistic system of federal funding for research. During the eight years between initial proposal and final passage, new and existing agencies claimed pieces from the original proposal, leaving the science foundation with limited responsibilities . In the end the final policy represented a failure for those who believed in popular control over research resources and those who believe that planning and coordination could be extended to the sphere of science policy. Conversely the final policy represented a victory for business interests (who feared competition from the government in the area of applied research and who saw Kilgore's patent law proposal as a threat to their property rights) and for scientists (who gained control of what would later become an important source of resources and professional autonomy).[10]
1972 : The NSF launched the biennial Science & Engineering Indicators report to the President of the United States and U.S. Congress. Founded in 1968 as a research institution in bibliometrics and patent analytics ipIQ dba The Patent Board has provided patent indicators and science literature analysis since the initial report in 1972.
NSF surveys of public attitudes and knowledge have consistently shown that the public has a positive view of science but has little scientific understanding. The greatest deficit remains the public's understanding of the scientific method. Recent surveys indicate that elsewhere in the world, including Japan and Europe, public interest in science and technology is lower than in the United States, with China a notable exception. A preponderance of Americans (54%) have heard "nothing at all" about nanotechnology.[15]
In September 2008, the NSF came under scrutiny when the agency's inspector general reported that at least 20 employees had viewed pornography at work. The report took the agency to task for not sufficiently policing its employees' Internet usage.[16] The incident garnered some brief media attention and several of those employees were dismissed or reprimanded.
On May 26, 2011, Senator Tom Coburn released a 73-page critical report, "National Science Foundation: Under the Microscope",[17][18] receiving immediate attention from such media outlets as The New York Times, Fox News, and MSNBC.[19][20][21]
Science and Engineering Indicators, published by the National Science Board, provides a broad base of quantitative information on the U.S. and international science and engineering enterprise.